

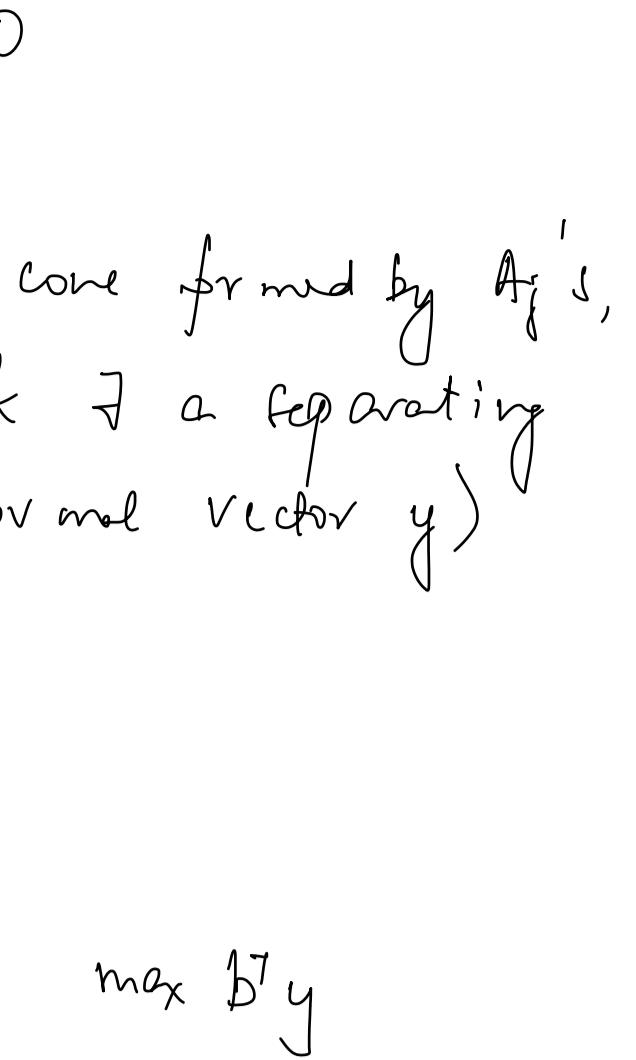
Duality, Farkas' Lemma, Applications.

Farkas' Lemma: Let $A_1, \dots, A_n, b \in \mathbb{R}^m$.

Then exactly one of the following holds:

$$\textcircled{1} \quad \exists x \in \mathbb{R}_+^n \text{ s.t. } \sum_{j=1}^n A_j x_j = b$$

$$\textcircled{2} \quad \exists y \in \mathbb{R}^m \text{ s.t. } \forall j, y^T A_j \geq 0, y^T b < 0$$



Geometric perspective: either b lies in the cone formed by A_j 's, or b lies outside & \exists a separating hyperplane (w/ normal vector y)

Proof of strong duality using FL:

(**Strong duality**):

$$\min c^T x$$

$$A x \geq b$$

$$\max b^T y$$

$$A^T y = c$$

$$y \geq 0$$

Let x^* be an optimal primal soln. Then \exists an optimal dual soln y^* , and $c^T x^* = b^T y^*$.

Proof of strong duality: Let x^* be optimal soln,

$$a_1^T x^* = b_1, \dots, a_k^T x^* = b_k \text{ be all the tight constraints. Note that } \nexists d:$$

$$a_1^T d \geq 0, \dots, a_k^T d \geq 0.$$

it must be true that $c^T d \geq 0$

$$\text{By FL, } \exists y_1^* \dots y_k^* \geq 0 \text{ s.t. } c = \sum_{i=1}^k a_i^T y_i^*$$

$$\text{Set } y_{k+1}^* = \dots = y_n^* = 0$$

$$\text{then } c = \sum_{i=1}^k a_i^T y_i^*, \quad y^* \geq 0$$

$$c^T x^* = A^T y^*$$

$$\text{& } c^T x^* = y_{k+1}^* A x^* = \sum_{i=1}^k y_i^* a_i^T x^*$$

$$= \sum_{i=1}^k y_i^* b_i = b^T y^* \quad \blacksquare$$

Proof of FL:

Easy part: $\textcircled{1} \Rightarrow \neg \textcircled{2}$:

$$\exists x \geq 0 : \sum_{i=1}^n A_i x_i = b$$

$$\Rightarrow \exists y \in \mathbb{R}^m,$$

$$y^T A_i \geq 0, \Rightarrow y^T b = \sum_{i=1}^n y^T A_i x_i \geq 0$$

Will show $\neg \textcircled{1} \Rightarrow \textcircled{2}$

$$\text{i.e., } \nexists x \geq 0 : \sum_{i=1}^n A_i x_i = b \Rightarrow \exists y \in \mathbb{R}^m : \forall i \in [n]$$

$$y^T A_i \geq 0, y^T b < 0.$$

$$\text{Let } P = \{A x : x \geq 0\}, \text{ then } b \notin P$$

Consider the problem:

$$\min \|b - z\|_2^2 : z \in P$$

Problem is P is not bounded, but we can fix that:

$0 \in P$, hence objective $\leq \|b\|_2^2$

So, $\min \|b - z\|_2^2 : z \in P, \|b - z\|_2^2 \leq \|b\|_2^2$

This has a (unique) soln, say z^* .

then let $y = z^* - b \neq 0$. Will show this is $\text{regd. } y$.

Then $\forall z \in P, \lambda z + (1-\lambda)z^* \in P$ for $\lambda \in [0,1]$

$$\text{hence } \|\lambda z + (1-\lambda)z^* - b\|_2^2 \geq \|z^* - b\|_2^2$$

$$\text{or } \lambda^2 \|z - z^*\|_2^2 + (1-\lambda)^2 \|z^* - b\|_2^2 + 2\lambda(1-\lambda)^T(z^* - b)$$

$$\geq \|z^* - b\|_2^2$$

$$\text{or for } \lambda > 0, \lambda \|z - z^*\|_2^2 + 2(z^* - b)^T(z^* - b) \geq 0$$

but then must be that $(z^* - b)^T(z^* - b) \geq 0$

(else we could make λ really small & get a -ve number)

$$\text{or } y^T z^* \geq y^T b$$

$$= y^T(z^* - b) + y^T b$$

$$> y^T b$$

$$\Rightarrow \forall z \in P, y^T z \geq y^T b$$

HW: Show how to get \hat{y} s.t. $\hat{y}^T b < 0, \hat{y}^T b \geq 0 \forall z \in P$

Alternative FL: Given $A \in \mathbb{R}^{m,n}, b \in \mathbb{R}^m$,

$\textcircled{1}$ Either $\exists x$ s.t. $A x = b$,

$\textcircled{2}$ Or $\exists y$ s.t. $y^T A = 0, y^T b > 0$

(exactly one must hold)

Max-flow Min-cut theorem: Given a directed graph $G = (V, E)$, each edge has capacity c_e , spl vertices $s \in V$ & $t \in V$.

A flow $f: E \rightarrow \mathbb{R}_+$ satisfies $\forall v \neq s, t$:

$$\sum_{e \in \delta^+(v)} f_e = \sum_{e \in \delta^-(v)} f_e$$

where $\delta^+(v) = \{ \text{edges leaving } v \}$

$\delta^-(v) = \{ \text{edges entering } v \}$

& $\forall e, f_e \leq c_e$

Define $\text{excess}_f(v) = \sum_{e \in \delta^+(v)} f_e - \sum_{e \in \delta^-(v)} f_e$

Then $\sum_{v \in V} \text{excess}_f(v) = 0 \Rightarrow \text{excess}_f(s) = -\text{excess}_f(t)$

(since $\text{excess}_f(v) = 0 \forall v \neq s, t$)

If $\text{val} := \text{value of flow} = \text{excess}_f(s) = \sum_{e \in \delta^+(s)} f_e - \sum_{e \in \delta^-(s)} f_e$

then $\text{val} = \text{excess}_f(t) = -\text{excess}_f(s) = \text{excess}_f(s) = \text{excess}_f(t)$

Problem: Find flow of maximum value.

Define a cut $S \subseteq V$, S -t cut is a cut S s.t. $s \in S, t \notin S$.

Capacity of cut $= c(S) = \sum_{e \in \delta^+(S)} c_e$

Max flow $\leq c(S) = \sum_{e \in \delta^+(S)} c_e$

Min cut $\geq c(S) = \sum_{e \in \delta^-(S)} c_e$

Max flow $\geq \text{min cut} = c(S)$

Will use complementary slackness to show equality.

Now let x^* be optimal primal soln, (λ^*, μ^*) be optimal dual soln. will show $\text{val}^* = c(S^*)$ (for some cut S^*)

Let $S^* = \{e : \lambda_e^* > 0\}$. Then $s \in S^*, t \notin S^*$, so this is an s -t cut.

Let $\lambda_v = \sum_{e \in \delta^+(v)} \lambda_e^*, \lambda_u = \sum_{e \in \delta^-(u)} \lambda_e^*, \mu_v = \sum_{e \in \delta^+(v)} \mu_e^*, \mu_u = \sum_{e \in \delta^-(u)} \mu_e^*$

then $\lambda_v \geq \lambda_u$ & $\mu_v \leq \mu_u$ (complementary slackness)

hence $\lambda^* \geq \mu^*$ & $\lambda^* \leq \mu^*$

hence $\lambda^* = \mu^*$ & $\lambda^* = \mu^*$

hence $\lambda^* = \mu^*$ & $\lambda^$